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Abstract

A computational procedure is presented for the

geometrically nonlinear analysis of aircraft tires.

The Space Shuttle orbiter nose-gear tire was mod-
eled through use of a two-dimensional laminated

anisotropic shell theory with the effects of variation

in material and geometric parameters included. Tile

four key elements of the procedure are (1) senti-
analytic finite elements in which the shell variables

are represented by Fourier series in the circumferen-

tial direction and piecewise polynomials in the merid-

ional direction; (2) a mixed formulation with the

fllndamental unknowns consisting of strain parame-

ters, stress-resultant parameters, and generalized dis-

placements; (3) multilevel operator splitting to ef-

fect successive simplifications and to uncouple the
equations associated with different Fourier harmon-

ics; and (4) multilevel iterative procedures and re-

duction techniques to generate the response of the

shell. Numerical results of the Space Shuttle orbiter

nose-gear tire model are compared with experimen-

tal measurements of the tire subjected to inflation
loading.

Introduction

Because of the axial symmetry of undeformed

tires, it is desirable ill their modeling and analysis to

exploit the substantial capability that currently ex-
ists for the numerical analysis of shells of revolution.

The most commonly used approach for the analysis of

shells of revolution is based on the representation of
the shell variables and loads by a Fourier series in the

circumferential coordinate 0, combined with the use

of a numerical discretization technique (such as finite

elements, finite differences, or numerical integration)

in the meridional direction. (See, for example, rcfs. 1

to 7.) Such an approach has the major advantages

of accuracy and stability (i.e., no locking or spurious
modes) over approaches which use two-dimensional

shell elements. Moreover, for linear problems of shells

with uniform circumferential properties, the Fourier

series representation permits separation of variables

and the equations uncouple in harmonics. However,

when applied to the analysis of tires the approach has

the following drawbacks, which can nmke the compu-

tational cost of the geometrically nonlinear analysis
of tires quite expensive:

1. For geometrically nonlinear problems, the
unknowns associated with different harmonics are

coupled (see refs. 8 and 9).
2. Even for linear problems, because of the

anisotropy of the cord-tire composites, the symmetric

and antisymmetrie responses (with respect to 0 = 0)
asssociated with each harmonic are coupled.

3. For localized loading (e.g., contact pressure on
the tire), a large number of harmonics are needed to

accurately predict the response.

Research on tire modeling and analysis at NASA

Langley Research Center has focused on developing

accurate and cost-effective strategies for predicting

tire response. Included in the research is the develop-
ment of analysis procedures for substantial reduction

of the computational expense resulting from the har-

monic and anisotropic couplings (items 1 and 2) and

the generation of the response associated with large

numbers of harmonics (item 3). The present paper

sunmlarizes the status of these development activi-

ties. To demonstrate the capabilities of the analysis
techniques, numerical studies were conducted with

the Space Shuttle orbiter nose-gear tire. Numerical

results are presented for all inflated Space Shuttle

tire, and these results are compared with experimen-
tal measurenlents.

Notation

Aij, Bij, Dij

bl, b2

cij

d

{s}

7_ o

El, E2

epi

{/}('_)

G_, Gr

stiffness coefficients of two-

dimensional shell model of tire

(i,j = 1,2,6)

parameters defining geometry of

tire cross section (see fig. 3)

stiffness coefficients of indi-

vidual unidirectional plies

(i,j =1,2,4,5, and 6)

diameter of tire nylon cord

vector of strain parameters for

shell model of tire (see eq. (2))

Young's moduli for nylon cord
and rubber

vector of strain parameters
associated with nth Fourier

harmonic for shell model of tire

(see eq. (2) and table 1)

elastic modulus (see tables 7
and 8 and fig. 9)

elastic moduli in direction of tire

cord and nornml to it

cord end count, ends per inch

volume fraction of nylon cord in

individual plies of tire

vector defined in equations (,5)

shear moduli for tire cord and
rubber



{O}(")

Ct2, G13

G23

{H}

{H},,

h

hk

ho

[f,l

[X;luJl

[K](,,/

[Ko],[K.]

l

Ms, Mo, M_o

N

N i

vector of nonlinear terms associ-

ated with nt, h Fourier harmonic

(see eqs. (5))

shear moduli in plane of tire cord

shear modulus normal to plane of
tire cord

vector of stress-resultant param-

eters for shell model of tire (see

eq. (3))

vectors of stress-resultant param-
eters associated with nth Fourier

harmonic for shell model of tire

(see eq. (3) and table 1)

total thickness of tire

nondimensional thickness of tire

(see fig. 2)

thickness of individual layers of
two-dimensional shell model

total thickness of tire at { = 0

(see fig. 3)

matrices defined in equations (6)

matrix containing nonlinear

terms (see eqs. (9) and (11))

linear matrix associated with nth

Fourier harmonic (see eqs. (5))

submatrices of [K]('0 (see

eqs. (s))

matrices associated with reduced

equations (see eqs. (16) and (17))

number of segments along tire
surfaces

bending and twisting stress

resultants (see fig. 1 and table 1)

number of displacement nodes in
element

number of Fourier harmonics

which are greater than or equal
to 1

shape functions used in approxi-

mating generalized displacements

and external loading

shape functions used in approx-

imating stress resultants and

strain components

Ns, No, Nso

n

7t

T_ o

{P},

{p}(,,)

PTt

Po

Po

Ps, PO, P

Qs,C2o

{el, {0}

R1, R2

ro

[Sol,[s], [R]

8i

extensional stress resultants (see
fig. 1 and table 1)

vector normal to reference surface
of tire

Fourier harmonic (circumferential

wave number)

Fourier harmonic at which

global approximation vectors are

generated

right-side vectors in

equations (13)

consistent load vector associated

with nth Fourier harmonic for

tire (see eqs. (5))

normal pressure components
associated with nth Fourier

harmonic for shell model of tire

(see eq. (1))

intensity of localized normal

loading of tire (see fig. 10)

inflation pressure acting normal

to inner surface of tire (see figs. 3

and 4)

intensity of external loading in

coordinate directions (see fig. 1)

transverse-shear stress resultants

(see fig. 1 and table 1)

load vectors associated with

reduced equations (see eqs. (18)
and (19))

principal radii of curvature in
meridional and circumferential

directions of reference surface of
shell model

normal distance from tire axis to

reference surface (see fig. 3)

=rat{=0

submatrices of [K] (f0 (see

eqs. (8))

meridional coordinate of tire (see
fig. 1); number of parameters

used in approximating each stress

resultant and strain components
in element

polygonal arc lengths of segment

of tire surfaces (see eq. (A2))
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U_ V, W

{x}

x

X,Z

x3

Yi

{zh

,'3

[r]

"712, "713,723

Es, CO, 2_sO

2Cs3, 2C03

_1,C2

Ok

t%, nO, 2t_sO

_1_ t_2

strain energy density of shell
model of tire

displacement components of ref-
erence surface of tire in merid-

ional, circumferential, and normal

directions (see fig. 1 and table 1)

vector of generalized nodal

displacement coefficients for tire

(see eq. (4))

vector of generalized nodal dis-

placement coefficients associated
with nth Fourier harmonic for

shell model of tire (see table 1)

position vector for points to be

interpolated along segment of tire

surfaces (see eqs. (A1))

Cartesian coordinates (see fig. 3)

coordinate normal to tire refer-

ence surfaces (see fig. 1)

position vector for data point.s of

segment (see eqs. (A1))

vector of unknowns associated

with nth Fourier harmonic (see

eqs. (7))

contact angle in meridional

direction (see fig. 10)

matrix of global approximation
vectors (see eqs. (14))

shear strain components in
principal material axis

extensional strains of reference

surface of tire

transverse-shear strains of shell

model of tire

in-plane strain components in tire
cord direction and normal to it

circumferential (hoop) coordinate

of tire (see fig. 1)

orientation angle used in equa-

tion (24) and table 6

orientation angle of tire cord, deg

bending strains of tire

principal curvatures in meridional
and circumferential directions of

reference surface of shell model

Uc,_r

P12, P21

G !

_1, _2

r12, r13_r23

0

Os, O0

{_}.

Superscripts:

i

principal curvatures at ( = 0

tracing parameter identi_'ing

coupling between different

Fourier harmonics (see eqs. (12))

Poisson's ratios of tire cord and

rubber

major and secondary Poisson's

ratios in individual plies

dimensionless coordinate along

meridian (see fig. 2)

tension factor

nornmlized tension factor (see

eq. (A4))

in-plane stress components in tire
cord direction and normal to it

shear stress components in

principal nmterial axes

angle between normal to merid-

ian and x-axis (see fig. 3)

rotational components of refer-

ence surface of tire (see fig. 1 and

table 1)

vector of amplitudes of global

approximation vectors (see

eqs. (14))

index of shape functions for

approximating generalized

displacements and external

loadings; ranges from 1 to m

index of shape functions for

approximating stress resultants

and strain components; ranges
from 1 to s

number of iterational cycles

matrix transposition

coefficient, of sine terms in

Fourier series

Subscripts:

max maximum value

n Fourier harmonic

Analysis

Mathematical Formulation

In the present study we model the Space Shut-

tle orbiter nose-gear tire using a moderate-rotation



Sanders-Budianskyshelltheorywith the effectsof
transverse shear deformation and laminated
•anisotropicmaterialresponseincluded(refs.10and
11).A total Lagrangianformulationisusedandthe
fundamentalunknownsconsistofthefivegeneralized
displacements,the eight stressresultants,and the
correspondingeightstrain componentsof the mid-
dle surface. The signconventionfor the different
tire stressresultantsandgeneralizeddisplacements
is shownin figure1. Theconceptspresentedin the
succeedingsectionscanbe extendedto higheror-
der sheardeformationtheoriesaswellas to three-
dimensionalcontinumntheory.

Spatial Discretization of the Tire
Eachof the generalizeddisplacements,thestress

resultants,andtile straincomponentsisexpandedin
a Fourierseriesof thecircumferentialcoordinate0.

The discretization in the meridional direction is per-
formed through the use of a three-field mixed finite-

element model. The following expressions are used
for approximating the external loading, strain com-

ponents, stress resultants, and generalized displace-
ments within each element:

p(s, O) = N i p2n cos nO + p_ sin nO

n=l

(1)

E(s, O) = N t E_, cos nO )+ sin.O (2)
r_,=l

H(s,O) N l l= H,_ cos nO )+ H n sin nO
_t=l

(3)

X(s,O) = N i X,i_cosnO )+ X n sin nO (4)
n=l

where N i are the shape functions used in approx-

imating the generalized displacements and external

loading in the meridional direction; _l are the shape

functions used in approximating the strain compo-

nents and stress resultants; p_ and -iPn refer to the

normal pressure coefficients; X_i_ and XT_ refer to the
--I

generalized displacement coefficients E[t and E n re-
--I

fer to the strain parameters; H[_. and H n refer to the

stress-resultant parameters; and subscript n refers to

the quantities associated with the Fourier harmonic

n. Note that the degree of the polynomial shape

functions _l is lower than that of N i. Moreover,

the continuity of the strain components and stress

resultants is not imposed at the interelement bound-

aries and, therefore, the strain and stress-resultant

parameters can be eliminated on the element level.

In equations (1) to (4), the range of i is 1 to .m,
the number of displacement nodes in the element;

the range of l is 1 to s, the number of parameters

used in approximating each of the strain components
and stress resultants• The shell variables without a

bar are the coefficients of the cosine series, the shell
variables with a bar are the coefficients of the sine

series, and a repeated superscript denotes summation

over its entire range• Henceforth, the vectors of
the 10 generalized displacement parameters, of the

16 strain parameters, and of the 16 stress-resultant

parameters chosen in association with the harmonic n

are denoted by {X}n, {H}n, and {E}n, respectively.

These vectors can be decomposed into symmetric and

antisymmetric sets (with respect to 0 = 0) as shown
in table 1.

Governing Equations

The governing discrete equations of the tire are

obtained through application of the three-field Hu-

Washizu mixed variational principle (see ref. 12).

If the number of terms (harmonics) retained in the

Fourier series is N + 1, then the governing equations
can be written in the following compact form:

,1
f(N)

K(1)

K(N)

Z0

Z1

ZN

G(1)(Zo, Z1,..., ZN) p(l)

G (N) (Zo, ZI,..., ZN) p(N)

= 0 (5)

where {Z}n (n = 0,1, ..., N) is the vector of
unknowns associated with the nth harmonic and

includes vectors of strain parameters {E}n, of stress-

resultant parameters {H}n, and of generalized

4



displacements{X}n; [K](') isa linearmatrix;{G} (n)
is a vectorof nonlinearterms;and{p}(n) is a con-
sistentloadvector•

Thefollowingobservationscanbcmadeaboutthe
governingequations(eqs.(5)):
1. Thefirst matrixon theleft sideof equations(5)

is blockdiagonal,whichis a direct consequence
of the orthogonalityof the trigonometricfunc-
tions. Theorthogonalityof trigonometricfunc-
tionsleadsto uncouplingof theequationsassoci-
atedwith thedifferentFourierharmonicsfor the
linearcase.For the nonlinearcase,the vector
{G}(n)couplestheunknownsassociatedwith all
the harmonics. (See, for example, ref. 9.)

2. The contributions of the different Fourier harmon-

its and the anisotropic (nonorthotropic) mate-

rial coefficients to the governing equations can be
identified as follows:

a. Fourier harrnonic_The block-diagonal ma-

trix [K] (r_) (n > 1) in equations (5) is linear

in the Fourier harmonic n. Therefore, [K] (n)

can be expressed as the sum of two matrices
as follows:

[K] ('_) = [.k'] + n[f<] (6)

where both [h'] and [f<] arc independent of n.

The nonlinear vector {G} (n) is quadratic in n.

b. Anisotropy (nonorthotropy) A unique fea-
ture of tim mixed fornmlation used herein is

that the anisotropic (nonorthotropic) inate-
rial coefficients are included only in the lin-

ear matrix [K] (n). For tile linear case, these

anisotropic coefficients result in the coupling

between the symmetric and antisymmetric

shell parameters (secref. 13 and table 2).

3. If the vector {Z}n is partitioned into subvectors

of parameters of strains, stress resultants, and

generalized displacements, that is,

{Z},, = H

X

(7)

then the matrix [K] (n) can i)e written in tim

following form:

[Ko + Ka - R l

[K](") = ] -n t so + _sJ (8)/ Sto + nS t

where the subnmtrices [Kol and [Ka I contain the
contributions of the orthotropic and anisotropic

(nonorthotropic) material coefficients. The ex-

plicit forms of the submatrices [I<o], [Ka], [So], [S],

and [R] are given in references 14 and 15.

4. The nonlinear vector {G} (n) contains bilinear

terms in {H}n and {X}n as well as quadratic

terms in {X},,.

Generation of the Nonlinear Response of

the Tire

For a given external loading, the governing non-

linear equations (eqs. (5)) are solved by using the
Newton-Raphson iterative technique. The recursion

formulas for the rth iterational cycle are

K 0 )

K (1)

K(N)

+ I _=(°°) N,]/,T,{ },r,o.A z'z.=-{,,,,,},r,,I'1',. (9)

and

(,.+l)

Z1

ZN

{Z0 ](")

Z1

ZN

(r)

AZ_

+

A ZN

(10)



where
0

"::-'[K](I J) = Oz_{G}(I) (I, J = 1 to N) (11)

For each Newton-Raphson iteration (represented by eqs. (9) and (10)), another iteration loop is performed

using the preconditioned conjugate gradient (PCG) technique to account for the coupling between the different

harmonics (i.e., the submatrix [_;]UJ)). In the inner iteration loop the following uncoupled equations are
solved:

([A']({}) + [_](00)(r)) {AZ}_r)

[K](N){aZ}!4)

: _{f}(0)(r) _ _([_](01){AZ}I

q- [K](02){AZ2} +... J- [K](0N){AZN})(r)

= _ {f}(1)(_)_ i([_](]o){AZ}o + [_](12){AZ}2

+'''+ [_](1N){AZ}N )(r) [

= _{f}(N)(r)_ _ ([_](N0){AZ}0 + [_](NI){AZ}I + .. .)(r)

(12)

where A is a tracing parameter which identifies the

coupling between the different Fourier harmonics.

When A = 1 equations (12) are equivalent to equa-

tions (9), and when A = 0 the equations uncouple

in harmonics. Note that because of the special struc-

ture of the Jacobian matrix in equations (9), only the
left side associated with the zeroth harmonic needs

to be updated in each iteration. An efficient tech-

nique is described in the next subsection for solving
equations (12).

Efficient Generation of the Response
Associated With Different Harmonics

An efficient procedure is presented herein for gen-

erating the tire responses associated with different

harmonics (solution of eqs. (12)). The basic idea of

this procedure is to approximate the tire response

associated with the range of Fourier harmonics, 1 _<

n < N, by a linear combination of a few global ap-

proximation vectors that are generated at a particu-

lar value of the Fourier harmonic within that range.
The full equations of the finite-element model are

solved for only a single Fourier harmonic, and the re-

sponses corresponding to the other Fourier harmon-

ics are generated using a reduced system of equa-

tions with considerably fewer degrees of freedom.

The proposed procedure can be conveniently divided

into two phases: (1) restructuring equations (12), for
1 < n < N, to delineate the dependence on the

Fourier harmonic n, and (2) generating global ap-

6

proximation vectors (or modes) to apprommate the

response associated with a range of values of the

Fourier harmonic and determining the amplitudes of
the modes. Application of the procedure to stress

and vibration problems of anisotropic shells of rev-

olution is described in references 16 and 17. Its ap-

plication to the solution of equations (12) is outlined
subsequently.

Restructuring of the governing equations.

If equations (6) and (8) are used, the governing

equations for the harmonic n (1 < n < N) can be
embedded in a single-parameter family of equations

and written in the following compact form:

([K] + n[h:]){AZ}n = {P(n)} + ]{P(n)} (13)

The two vectors {P(n)} and {P(n)} are quadratic
in n.

Basis reduction and reduced system of

equations. The basis reduction is achieved by ap-

proximating the vector {AZ}n, for a certain range of

Fourier harmonics, 1 < n < N, by a linear combina-
tion of a few global approximation vectors which are

generated at a particular value of the Fourier har-

monic within that range. The approximation is ex-
pressed by the following transformation:

{AZ}n = [F]{V*'}n (14)



where[F]isa transformationmatrixwhosecolumns
arethepreselectedapproximationvectors,and{kO}r_
is a vectorof unknownparametersrepresentingthe
amplitudesof the globalapproximationvectorsfor
the harmoniesn. The number of components of

{_}n is much less than the number of components

of {AZ},,.
A Bubnov-Galerkin technique is now used to re-

place the original equations (eqs. (13)) by the follow-

ing reduced equations in {qJ}n:

([_] + _,[k]){q,},, = {q}+ _{0} (15)

where

[_]= [r]t[k][r] (16)

[_1= [r]t[K][r] (17)

{q} = [r]¢(P(,z)} (18)

(O}= [U{/'(_)} (19)

Selection and generation of global approxi-

mation vectors. The global approximation vectors

are selected to be the response associated with a sin-

gle Fourier harmonic no and its various-order deriva-
tives with respect to n. Henceforth, the derivatives

of the response with respect to 7_ are referred to as

"path derivatives." The matrix [F] in equations (14)

is therefore given by

0 {Az} {Az} ...]
(20)

The path derivatives are obtained by successive

differentiation of the governing equations (eqs. (13)).

The recursion relations for the first three global

approximation vectors can be written in the following
fornl:

([h'] + no[h']) {AZ} .... = {P} + I{P} (21)

(.1 _0{.}0,,+
-[_:]{_z} ..... (22)

([k]
02 02 . 02

- 2[h'] 0 {AZ} ..... (23)

Note that the left-side matrix in equations (21) to

(23) is the same, and therefore it needs to be decom-

posed only once in the process of generating all the

global approximation vectors.

Comments on proposed procedure. The fol-

lowing comments are nmde concerning the forego-

ing procedure for generating the responses associated
with different harmonics:

1. The particular choice of the global approxixnation

vectors used herein provides a direct quantitative

measure of the sensitivity of the different response

quantities of the tire to the circumferential wave

number (the Fourier harmonic) n.

2. For problems requiring large numbers of Fourier

harmonies (e.g., 100 or lnore), the range of 7_ is

divided into intervals of fewer (e.g., 7) harmonics

each; the global approximation vectors and re-
duced equations are generated at an interlnediate

value of n within each interval, and the responses
associated with the values of n within that in-

terval are generated by the foregoing procedure.

Note that higher accuracy of the reduced solu-

tions can be obtained by marching backward as

well as forward in the n-space with the reduced

equations.

3. The foregoing procedure can be directly applied to

the solution of the governing nonlinear equations

(eqs. (5)). This is accomplished by using a reduc-
tion method, with the control parameter selected

to be load, displacement, or arc length in the so-

lution space and the global approximation vectors
selected to be the various-order derivatives of the

response quantities with respect, to the control pa-

rameter (see ref. 14). The global approximation
vectors are obtained by successive differentiation

of the governing equations (eqs. (5)) with respect

to the control parameter. The left-side nmtrix of

those equations has the same form as that. of equa-

tions (9). If the global approximation vectors are

evaluated at. zero value for the control parameter,

the matrix [K](IJ) on the left. side of equations (9)

vanishes and the equations uncouple in harmon-

ics. The application of the foregoing procedure

considerably reduces the computational effort in

generating the global approximation vectors and

greatly enhances the effectiveness of the reduction
method.

4. The computational effort can t)e further reduced

by using the procedure outlined in reference 14
to uncouple the equations associated with the

symmetric and antisymmetric shell parameters

(with respect to 0 = 0). The procedure is based
on transferring the anisotropic (nonorthotropic)

7



terms(submatrix[Ka] in eqs.(8)) to the right
sidesof equations(12)andaddinganotherlevel
of PCGiterationsto accountfor them.

Results and Discussion

Numericalstudieswereperformedto assessthe
accuracyof tile two-dimensionalshell modeltire
and the effectivenessof tile computationalproce-
duredescribedin theprecedingsection,for generat-
ingtheresponseassociatedwithdifferentharmonics.
Herein,theapplicationof tilemodelandthecompu-
tationalprocedureto theSpaceShuttleorbiternose-
geartire arepresented.Thegeometricandmaterial
characteristicsof thetire aregivenin figures2and3.
TheSpaceShuttleorbiternose-geartire isa 32×8.8
typeVII bias-plytire with a ply ratingof 16. The
tire carcassis constructedof 10laminaof nylonand
rubberwithanadditionalreinforcingplybeneaththe
tire treadasshownin figure2. Thetire hasathree-
groovetread,hut themodelassumesasmoothtread
instead.Theratedload for the tire is 15 000 lb at an

inflation pressure of 320 psi.

The numerical studies were performed with three-
field mixed finite-element models used for the dis-

cretization of the tire in the meridional direction.

Linear interpolation functions were used to approx-
imate each of the stress resultants and strain com-

ponents, and quadratic Lagrangian interpolation

functions were used to approximate each of the gen-

eralized displacements. The integrals in the govern-

ing equations were evaluated with a two-point Gauss-

Legendre numerical quadrature formula. Because of

the symmetry of the shell meridian and loading, only
half of the tire meridian was analyzed. The finite-

element models used are shown in figure 4.

Modeling of the Tire Geometry

The Space Shuttle orbiter nose-gear tire was mod-
eled as a two-dimensional laminated shell with vari-

able thickness and variable stiffness. The outer sur-

face of the tire was taken to be tile reference surface

of the shell model. A tire was cut into sections and

used to obtain accurate measurements for the cross-

sectional shape of the uninflated tire. A smoothed

spline under tension was used to fit a curve through

the measured coordinates of the cross-sectional pro-

file in a least-squares sense (see refs. 18 and 19). Be-
cause of symmetry, only half of the cross section was

modeled. A smooth variation of the second deriva-

tive, _z z , was achieved by adjusting the standard de-

viations of the measured profile at the data points.
For a detailed description of spline smoothing tech-

niques, see references 19 to 21.

The spline function, with the tension factor set

equal to 0.1 and slope continuity enforced at both

ends of the curves, was used to generate additional

points along the tire meridian. The interpolation

procedure is outlined in appendix A and the result-

ing geometric characteristics of the tire are presented

in appendix B and figure 5. The thickness of the

tire carcass at the nodal points of the finite-element

model was computed along the normal vector to the

tire reference (outer) surface by locating the points
of intersection of the normal vectors with the inner

surface of the tire carcass. To facilitate these compu-

tations the tire inner surface was approximated by a
set of third-degree polynomials.

Evaluation of Stiffness Coefficients of the

Two-Dimensional Shell Model

The cord-rubber composite was treated as a lam-

inated material. For the purpose of computing stiff-

ness variations in the meridionat direction, the tire

model was divided into seven regions, as shown in fig-
ure 2. Thicknesses of the individual carcass plies were

measured at the interfaces between the regions and

are given in table 3. A linear variation was assumed

for the thickness within each region. The thickness

of the tire tread and sidewall covering was computed

by subtracting the sum of the individual ply thick-
nesses from the total thickness of the carcass at each

location.

The material properties of the different plies were

obtained with the mechanics of material approach,

which has been widely applied to rigid composites.

(See refs. 22 and 23.) The elastic constants of the
tire constituents used in this study are presented in

table 4. It was assumed that nylon cords of two
different diameters were used in the construction of

the tire: d = 0.022 in. for tile bottom two plies and

the tread reinforcement in region I, and d = 0.031 in.
for all other plies.

The cord end counts (epi) for individual plies at

the region interfaces are given in table 5. A linear

variation was assumed for epi within each region.
The formulas for evaluating the composite elastic

coefficients for each ply, from the properties of the

ply constituents, are given in appendix C.

The stress-strain relations of the two-dimensional

shell were obtained by first transforming the stiff-

nesses of each of the individual layers to the global

shell coordinates (s and 0) and then integrating these
coefficients through the thickness. The cord orienta-

tions in the individual plies of each region are given in
table 6. Tile following formula was used to determine



Ok, the angle (in degrees) measured from the s-axis

to the &axis, at the numerical quadrature points:

(24)
where { is the dimensionless coordinate along the tire
meridian.

The resulting shell constitutive relations are given
in appendix C. The meridional variations of the
stiffness coefficients of the shell model are shown in

figure 6.

Case of Inflation Pressure

To assess the accuracy of the shell model of the

tire, the deformations produced by uniform inflation
pressure of Po = 320 psi, acting normal to the in-

ner surface, were calculated using the geometrically
nonlinear shell theory. Twelve finite elements were

used in modeling half the cross section (a total of
384 strain parameters, 384 stress-resultant paranm-

ters, and 243 nonzero generalized displacements; see

fig. 4(a)). The calculated values were compared with

the experimental data obtained on the Space Shuttle

orbiter nose-gear tire. (See fig. 2.) The results are

summarized in figures 7 to 9. Close agreement be-

tween the predicted deformations and experimental

results is demonstrated in figure 7. Figures 8 and

9 show the meridional variations of the generalized

displacements, stress resultants, and strain energy
densities. As shown in figure 9 for the case of in-

flation pressure, the transverse-shear strain energy

density is considerably smaller than the extensional

and bending strain energy density.

Case of Localized Loading

To assess the effectiveness of the computational
procedure, linear solutions were obtained for a lo-

calized normal loading on the outer surface simulat-

ing contact pressure. The normal loading (in pounds
per square inch) is given by the following equations,

which model experimental data obtained at Langley
on the shuttle tire:

10 /

_Po_ _ Zpn cosnO (-0.2 < { < 0.2)

(25)P = n=l

o (1_1> 0.2)

where
2po .

Pn = -- sin n/3 (26)
TtTr

and Po and _3are functions of { as shown in figure 10.

Because of the symmetry of the shell meridian

and loading, only half the meridian is analyzed us-

ing 37 elements (a total of 1184 stress-resultant pa-

rameters, 1184 strain parameters, and 743 nonzero

displacement degrees of freedom; see fig. 4(b)). The
boundary conditions at the centerline are taken to

be the symmetric or antisymmetrie conditions. Typ-
ical results are presented in figures 11 and 12 and in
tables 7 and 8.

The foregoing procedure was applied to this prob-

lem, and 10 global approximation vectors were eval-

uated at no = 5 and used to generate the tire re-

sponse for n = 1 to 10. Accuracy of the generalized

displacements obtained by the procedure with 8, 10,

and 15 global approximation vectors is indicated in

figures 11 and 12. Each generalized displacement in

figures 11 and 12 is normalized by dividing by its

maximum absolute value given in tables 7 and 8.

Generalized displacements predicted by the foregoing

procedure with 15 vectors are almost indistinguish-

able from those predicted by the direct finite-element
solution.

Conclusions

A computational procedure is presented for the
geometrically nonlinear analysis of aircraft tires.

The Space Shuttle orbiter nose-gear tire was mod-

eled through use of a two-dimensional laminated

anisotropic shell theory with the effects of variation

in material and geometric parameters included.

The governing discrete equations of the tire are

obtained through application of the three-field Hu-

Washizu mixed variational principle. The multilevel

operator splitting is used to (1) uncouple the equa-

tions associated with different harmonics, (2) identify

the effects of different Fourier harmonics, and (3) de-

lineate the effect of anisotropic (nonorthotropic) ma-
terial properties. The nonlinear governing finite-

element equations of the tire are solved with the

Newton-Raphson iterative procedure. An efficient

procedure is presented for the solution of the result-

ing algebraic equations at each iteration, associated
with different Fourier harmonics. The effectiveness

of this procedure is demonstrated by means of a nu-

merical example of the linear response of the Space

Shuttle orbiter nose-gear tire subjected to inflation
loading. The tire model is subjected to localized

normal loading on the outer surface (simulating the
contact pressure).

Results of the present study suggest the follow-

ing conclusions relative to the two-dimensional shell

model used in simulating the response of the tire and

to the proposed computational procedure for gen-
erating the tire response associated with different
Fourier harmonics:

9



1. A two-dimensionalshellmodelwith variablegeo-
metricandstiffnesscharacteristicsaccuratelypre-
dictsthe deformationof thetire whensubjected
to inflationpressure.

2. Useof pathderivatives(derivativesoftheresponse
with respectto tile Fourierharmonic)asglobal
approximationvectorsleadsto accuratesolutions
with a smallnumberof vectors.Therefore,the
time requiredto solvethe reducedequationsis
relativelysmalland tile total time requiredto
generatethe responsefor a rangeof 10Fourier
harmonicsis little morethan that requiredfor a
singleFourierharmonic.

3. Globalapproximationvectorsprovidea direct
measureofthesensitivityofthedifferentresponse
quantitiesto thecircumferentialwave(harmonic)
number. Sensitivityof the globalresponsecan
alsobeassessedwith thesevectors.

4. Thereductionmethodusedin theproposedcon>
putationalprocedureexploitsthe bestelements
of thefinite-elementmethodandof the Bubnov-
Galerkintechnique,asfollows:
a. Thefinite-elementmethodisusedasageneral

approachfor generatingglobalapproximation
vectors.Theflfll finite-elementequationsare
solvedonlyfor asingleFourierharmonic.

b. TheBubnov-Galerkintechniqueis usedasan
efficientprocedureforminimizinganddistrib-
utingtheerrorthroughoutthestructure.

5. Thereductionmethodextendstherangeofappli-
cabilityof theTaylorseriesexpansionbyrelaxing
therequirementof usingsmallchangesin thecir-
cumferentialwavenumber.

NASALangleyResearchCenter
Hampton,VA23665-5225
January22,1990
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Appendix A

Summary of the Equations for a Spline
Under Tension

This appendix presents the interpolation proce-

dure which uses a smoothed spline under tension to

fit a curve through the measured coordinates of the

cross-sectional profile in a least-squares sense. The

cubic spline function requires that the second deriva-

tive be pieeewise linear and continuous. Thus, the

second derivative with the effect of tension is speci-

fied by

_(s)-o'2x(s) = [x(sl)- a2yl]_ + [:_(,%+1)-_2yi+I]

8 'Si
× -- (s, 5_._< <+1) (AI)

'si+I -- si

where x = Ix(s), z(s)] is the position vector for points

along the segment; Yi = [x, z]i is the corresponding

data at point i; a dot over a symbol refers to a

derivative with respect to s. The chordal length

(polygonal arc length) s i is given by

and

S I :0

_i = 8i-1 -_ [(,_i- Zi 1) 2 + (Zi- Zi 1)2] 1/2

(A2)

After solving equations (A1) for x(s) and replacing

x(si) with Yi, we obtain

X(S) : [X(Si)/0"2] sinh"(si+l- S)

sinhcr(si+ 1 - si)

+
[yi - 5c(si)/a 2] (Si+l - s)

8i+ 1 -- 8 i

+
[x(si+l)/C r2] sinha(s - si)

sinh cr(Si+l - si)

+ [Yi+I- x(si+l)/_r2] (s- s_) (A3)
Si+ 1 -- S i

From differentiating equations (A3) and equating

right- and left-side derivatives at si (for i = 2, 3,...,

1 - 1), we obtain a set of linear algebraic equations for

5:(si). With the assumption of a nonperiodic spline

in which both slopes at Sl and s t are provided, the

tridiagonal differential equation is easily, solved.

Once the second derivatives at point i = 1, 2,..., 1

are obtained, the first and second derivatives :_(s)

and J_(s) at the interpolated points arc evaluated

by differentiating equations (A3) and they are used

to compute the geometric parameters of the tire in

appendix B.
A normalized tension factor is used to eliminate

a nonlinear behavior by setting (see ref. 24)

, o(sl-sl)
- l- 1 (A4)

In practice, if this factor is less than 0.001, the

resulting curve is approximately a cubic spline, and

if it is greater than 50, the curve is nearly piecewise
linear. Note that s in equations (A1) to (A4) is not

the actual arc length but the chordal length. Thus,

the more data points one has from smoothing, the

more accurate the arc length.
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Appendix B

Geometric Characteristics of the Tire

This appendixpresentsthe geometriccharac-
teristicsderivedfrom the applicationof the inter-
polationproceduredescribedin appendixA. From
this splineinterpolation,weobtainthefollowingin-
formationaboutthecurveat eachinterpolateddata

dz dz d2x d2z The geometricpoint: s, x, z, 3_, 3_, d_-s ' and _.

parameters of the tire are then evaluated as follows:

Normal vector.

dx/ds

x/(dx/ds) 2 + (dz/ds) 2

dz/ds

x/(dx/ds) 2 + (dz/ds) 2

Curvatures:

,-- -- --cos3 0 dz 2]_1 Ra

1 cos ¢

_2- R2 x

Note that x -- r, the normal distance from the axis

to the reference surface, and dx dr Also note that5q=_ •
the normal vector is used to compute the thickness,

the components of the inflation pressure acting on
the inner surface of the tire, and the transformation

matrix with respect to the global coordinate system,

if necessary.

12



Appendix C

Constitutive Relations for the Two-Dimensional Laminated Shell Model

This appendix presents the formulas for evaluating the composite elastic coefficients for each ply (from the

properties of the ply constituents) and the resulting shell constitutive relations. The stress-strain relations of

the orthotropic and unidirectional layers are given by

• _1

_r2

r23

r13

7"12,

"ell c12

c12 c22

c44

c55

c66

"/23

"713

")'12

where the reduced stiffnesses cij are given by

ell --

Cl 2 --

c22 --

E1

1 - P12V21

c44 = G23

c55 = G13

c66 = G12

The elastic constants are computed by (see ref. 22)

= F-,cfc+ Er(1 - Ic)

u12 = Ucfc + ur(1 - fc)

E 2 =
Er[Ec(1 + 2fc) + Er(1 - fc)]

Ec(1 - fc) + 2Er(1 + 0.5fc)

G12 = G13 = Gr[Gc + ar + (Gc - Gr)fc]

G23 =0.6G12

u12E2
P21 -

E1

where subscripts c and r represent the quantities of the nylon cord and the rubber, respectively, and fc is the

volume fraction of the nylon cord:

7rd2(epi)
fc- --

4hk

where d is cord diameter, h k is the layer thickness, and epi is the cord end count (in ends per inch).

13



The relationships between the stress resultants and strain measures of the tire are given by

N,_

N0

Ms
z

Me

Mso

Qo

All

A66

Symmetric

Bll B12 @

B12 B22 @

®® 00
Dll

D66

C8

co

2_ sO

1£ S

_0

2e;sO

2es3

2603,

where Aij , Bij , and Dij (i,j = 1, 2, 6) are shell stiffness coefficients. The nonorthotropic (anisotropic) terms
are circled and dots indicate zero terms.
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Table 1. Symmetric and Antisymmetric Tire Parameters With Respect to 0 = 0

{E},,

{Hh

Symmetric set Antisymmetric set

Strain components

gs,n, gO,n, 2_sO,n, ms,n,

nO rt, 2_s0,n, 2Cs3,n, 2_03,_1

{ s,n , _O,n , 2a sO,n , _s,n ,

_O,n, 2_sO,n, 2{s3m, 2C03,r_

Stress resultants

m

Ns,,_ , NO,,,, Nso,n , J_S_TI ?

m m

Ns,n NO,n, N_O,,_, Ms,n,

Mo,,, m_o,_, Q, ,_,Qo,,_

Generalized displacements

Table 2. Different Types of Coupling in Analysis of Tires With Semianalytic Finite Elements

Response Material Governing finite-element equations

Linear Uncoupled in harmonics

Nonlinear

Isotropic or

orthotropic

Anisotropic

Anisotropic

Symmetric and antisymmetric

variables uncoupled

Uncoupled in harmonics

Symmetric and antisymmetric

variables uncoupled

Coupled in harmonics

Symmetric and antisymmetric

variables coupled

16



Table3. Variationof Ply Thicknesshk/ho

[ho = 0.7513 in.]

Ply number

(top to bottom)

1 (tread

and sidewall)

a2

10

11

hk/ho for region--

I II III IV V VI VII

16
hi = h - _ hA-

k=2
0.0865-

.0865

.0865

.0865

.0865

.0865

.0666

.0666

.0666

.0666

.0666

.0666

.0666-

.0666

.0666
.0666

.0666

.0666

.0466-

.0466

0.0865

.0658

.0865-

.0658

.0666-

.0506

.0666-

.0506

.0666-

.0506

.0666-

.0506

.0666 _

.0506

.0666-
.0506

.0466-

.0354

.0466-

.0354

0.0658-

.0692

.0658-

.0692

.0506-

.0532

.0506-

.0532

.0506-

.0532

.0506-

.0532

.0506-

.0532

.0506-
.0532

.0354-

.0373

.0354-

.0373

0.0692-

.0813

.0692-

.0813

.0692

.0813

.0426

.0500

.0426

.0500

.0426

.0500

.0426

.0500

.0426
.0500

.0426

.0500

.0346-

.0407

0.0801-

.0937

.0801-

.0937

.0488

.0571

.0488

.0571

.0488

.0571

.0488

.0571

.0488

.0571

.0488-

.0571

.0488-

.0571

.0488

.0571

0.0681-
.1238

.0681-

.1238

.0523-

.0950

.0523

.0950

.0523-

.0950

.0523-

.0950

.0523

.0950

.0523

.0950

.0523

.0950

.0523

.0950

0.0918
.1240

.0918-

.1240

.0652-

.0880

.0652

.0880

b.2662

.3594

.0652

.0880

.0652-

.0880

.0652

.0880

.0652

.0880

b.2662

.3594

12 .0466 .0798- .0798 .0346- .0375 .0523 .0652

•0466 .0798 .0798 .0407 .0439 .0950 .0880

13 .0798- 0 0 .0798 .0375 .0523- .0652
•0798 .0798 .0439 .0950 .0880

14 0 0 0 0 .0798 .0366 .0466
I .0798 .0666 .0629

15 0 0 0 0 0 .0366 .0466-

.0666 .0629

16 0 0 0 0 0 .0798- .1464-

.1464 .1597

aSecond layer of region I represents the laver which has the reinforcement (see fig. 2).

bThis represents the thickness of the bead wires.
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Table4. Valuesof ElasticConstantsof Tire ConstituentsUsedin PresentStudy

Tireconstituent

Rubber
Nyloncord
Beada

Young's modulus, psi

4.5 x 102

3.5 x 105

2.9 x 107

Shear modulus, psi

1.51 × 102

7.00 x 102

1.10 x 107

Poisson's ratio

0.49

.66

.30

aSince the deformations are small in tile bead area, it. is reasonable to assume that the bead wires are

isotropic.

Table 5. Variation of Nylon Cord End Counts in Different Plies Along Meridian

Cord end count, ends per inch for region

Ply nulnber

(top to bottom) I II III IV V VI VII
Rubber Rubber Rubber Rubber Rubber Rubber Rubber1 tread and

sidewall
2

3

4

5

6

79
10

11

12
13

14

15

16

16-16
i8 18

18-18

23 21

23 21

23-21

23-21

30-29

30-29
Rubber

18-14
18-14

21 20

21-20

21 20
21-20

29 26

29 26
Rubber

14 14

14 14

20 18

20 18

20 18

20 18
26 25

26 25
Rubber

14 14

14 14

18 16

18 16

18 16
18 16

18 16

25 24

25 24

Rubber

14 14

14 14

16 16

16 16

16 16

16 16
16 16

16 16
24 22

24 22

Rubber

14 14

14 14

16 14

16 14

16 14
16 14

16 14

16 14
16 14

16 14

22 22

22-.22

Rubber

14 14

14 14

14 14

14 14

Bead
14 14

14 14

Bead

14 14

14 14

22 22

22 22

Rubber

18



Table6. Variationof CordOrientationof IndividualPlies,Ok, Along Meridian Region

Ok, deg, for region -

Ply number

(top to bottom) I II III IV V VI VII
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Rubber

-_-6
+_

0+6

-_-6
Rubber

Rubber

a

o+6
-a-6
Rubber

Rubber

0

o+6
-a-a
Rubber

Rubber

o+6

-a-6
Rubber

Rubber

-a

a

o+6
-a- 6
Rubber

Rubber

a
--0

.-0

o+a
-a- 6
Rubber

Rubber

-a
Bead

Bead

a

o+6
-_- 6
Rubber
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Table7. MaximumAbsoluteValuesof NormalDisplacementComponentsu,_

[Tire shown in fig. 2; Po,max = 445.3 psi; ho = 0.7513 in.; Ero = 1160.3 psi]

Fourier Fourier

harmonic, n wn Ero / (Po,max ho) harmonic, n wn ET o / (190,maxho)

18.08

11.41

7.110
4.841

2.906

6

7

8
9

10

1.095

.3122

1.134

1.424

1.313

Table 8. Maximum Absolute Values of In-Plane Displacements and Rotation Components

[Tire shown in fig. 2; Po,max = 445.3 psi; ho = 0.7513 in.; ET; -- 1160.3 psi]

Displacements
and rotations

UnETo/(Po,mmxho)

VnETo/(Po,maxho)

Cs,,_ETo/19o,ma_
&O,nETJPo,max

n=l

7.584

.04162

3.602

.1805

Fourier harmonic

n=5

0.3266

.01139

.4840

.01271

n= 10

1.229 x 10 -1

3.773 x 10 -3

1.304 x 10 -1

6.982 x 10 -3
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(a) Stiffness coefficients associated with uncoupled (orthotropic) response.

Figure 6. Meridional variation of stiffness coefficients of two-dimensional shell model of Space Shuttle orbiter

nose-gear tire. ET, ' = 1160.3 psi.
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